Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 785242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917036

RESUMEN

Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic ß-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce ß-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Esquema de Medicación , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/patología , Infusiones Intravenosas , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/patología , Mioblastos Esqueléticos/fisiología , Embarazo , Ovinos
2.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738614

RESUMEN

Autosomal dominant PDGFRß gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRß exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRßD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRßD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRßD849V cells suggests that overgrowth in mice involves PDGFRßD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRßD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.


Asunto(s)
Mutación con Ganancia de Función , Mioblastos Esqueléticos/metabolismo , Mutación Puntual , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sustitución de Aminoácidos , Animales , Condrogénesis/genética , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mioblastos Esqueléticos/patología , Osteogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
3.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519272

RESUMEN

Skeletal muscle fibers are multinucleated cellular giants formed by the fusion of mononuclear myoblasts. Several molecules involved in myoblast fusion have been discovered, and finger-like projections coincident with myoblast fusion have also been implicated in the fusion process. The role of these cellular projections in muscle cell fusion was investigated herein. We demonstrate that these projections are filopodia generated by class X myosin (Myo10), an unconventional myosin motor protein specialized for filopodia. We further show that Myo10 is highly expressed by differentiating myoblasts, and Myo10 ablation inhibits both filopodia formation and myoblast fusion in vitro. In vivo, Myo10 labels regenerating muscle fibers associated with Duchenne muscular dystrophy and acute muscle injury. In mice, conditional loss of Myo10 from muscle-resident stem cells, known as satellite cells, severely impairs postnatal muscle regeneration. Furthermore, the muscle fusion proteins Myomaker and Myomixer are detected in myoblast filopodia. These data demonstrate that Myo10-driven filopodia facilitate multinucleated mammalian muscle formation.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Animales , Diferenciación Celular , Fusión Celular , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Desarrollo de Músculos , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mioblastos Esqueléticos/patología , Miosinas/genética , Seudópodos/genética , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Factores de Tiempo
4.
Biochem Biophys Res Commun ; 578: 115-121, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34562651

RESUMEN

Earth's gravity is essential for maintaining skeletal muscle mass and function in the body. The role of gravity in the myogenic mechanism has been studied with animal experiments in the International Space Station. Recently, gravity-control devices allow to study the effects of gravity on cultured cells on the ground. This study demonstrated that simulated microgravity accelerated aging of human skeletal muscle myoblasts in an in-vitro culture. The microgravity culture induced a significant decrease in cell proliferation and an enlargement of the cytoskeleton and nucleus of cells. Similar changes are often observed in aged myoblasts following several passages. In fact, by the microgravity culture the expression of senescence associated ß-Gal was significantly enhanced, and some muscle-specific proteins decreased in the enlarged cells. Importantly, these microgravity effects remained with the cells even after a return to normal gravity conditions. Consequently, the microgravity-affected myoblasts demonstrated a reduced capability of differentiation into myotubes. In the body, it is difficult to interpret the disability of microgravity-affected myoblasts, since muscle regeneration is linked to the supply of new myogenic cells. Therefore, our in-vitro cell culture study will be advantageous to better understand the role of each type of myogenic cell in human muscle without gravitational stress at the single cell level.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Mioblastos Esqueléticos/patología , Análisis de la Célula Individual/métodos , Simulación de Ingravidez/métodos , Envejecimiento/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Citoesqueleto/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R572-R587, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431403

RESUMEN

Hyperoxic conditions are known to accelerate skeletal muscle regeneration after injuries. In the early phase of regeneration, macrophages invade the injured area and subsequently secrete various growth factors, which regulate myoblast proliferation and differentiation. Although hyperoxic conditions accelerate muscle regeneration, it is unknown whether this effect is indirectly mediated by macrophages. Here, using C2C12 cells, we show that not only hyperoxia but also hypoxia enhance myoblast proliferation directly, without accelerating differentiation into myotubes. Under hyperoxic conditions (95% O2 + 5% CO2), the cell membrane was damaged because of lipid oxidization, and a disrupted cytoskeletal structure, resulting in suppressed cell proliferation. However, a culture medium containing vitamin C (VC), an antioxidant, prevented this lipid oxidization and cytoskeletal disruption, resulting in enhanced proliferation in response to hyperoxia exposure of ≤4 h/day. In contrast, exposure to hypoxic conditions (95% N2 + 5% CO2) for ≤8 h/day enhanced cell proliferation. Hyperoxia did not promote cell differentiation into myotubes, regardless of whether the culture medium contained VC. Similarly, hypoxia did not accelerate cell differentiation. These results suggest that regardless of hyperoxia or hypoxia, changes in oxygen tension can enhance cell proliferation directly, but do not influence differentiation efficiency in C2C12 cells. Moreover, excess oxidative stress abrogated the enhancement of myoblast proliferation induced by hyperoxia. This research will contribute to basic data for applying the effects of hyperoxia or hypoxia to muscle regeneration therapy.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Mioblastos Esqueléticos/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Regeneración , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Cinética , Metabolismo de los Lípidos , Ratones , Desarrollo de Músculos/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , Estrés Oxidativo/efectos de los fármacos , Oxígeno/toxicidad , Regeneración/efectos de los fármacos
6.
Nat Commun ; 12(1): 2951, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34012031

RESUMEN

The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.


Asunto(s)
Fibronectinas/metabolismo , Glicosiltransferasas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Pentosiltransferasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Membrana Basal/metabolismo , Membrana Basal/patología , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Glicosilación , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Distrofia Muscular Animal/genética , Mutación , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Pentosiltransferasa/deficiencia , Pentosiltransferasa/genética , Fenotipo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
7.
Sci Rep ; 11(1): 6152, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731782

RESUMEN

Acute ischemia-reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0-20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia-reperfusion injury.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Femenino , Humanos , Masculino , Ratones , Músculo Esquelético/patología , Mioblastos Esqueléticos/patología , Cultivo Primario de Células
8.
J Cell Physiol ; 236(10): 7033-7044, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33738797

RESUMEN

Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA-free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α-linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.


Asunto(s)
Ácidos Grasos/toxicidad , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Insulina/farmacología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Ingeniería de Tejidos
9.
Am J Physiol Cell Physiol ; 320(4): C577-C590, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439777

RESUMEN

The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.


Asunto(s)
Neoplasias de la Mama/metabolismo , Caquexia/metabolismo , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , PPAR gamma/metabolismo , Comunicación Paracrina , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología , Caquexia/etiología , Caquexia/genética , Caquexia/patología , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Femenino , Células HEK293 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , PPAR gamma/agonistas , PPAR gamma/genética , Rosiglitazona/farmacología , Transducción de Señal , Transcripción Genética
10.
J Cell Physiol ; 236(4): 2276-2289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989814

RESUMEN

Fat infiltration in skeletal muscle is observed in several myopathies, is associated with muscular dysfunction, and is strongly correlated with insulin resistance, diabetes, obesity, and aging. In animal production, skeletal muscle fat (also known as intermuscular and intramuscular fat) is positively related to meat quality including tenderness, flavor, and juiciness. Thus, understanding the cell origin and regulation mechanism of skeletal muscle fat infiltration is important for developing therapies against human myopathies as well as for improving meat quality. Notably, age, sarcopenia, oxidative stress, injury, and regeneration can activate adipogenic differentiation potential in myoblasts and affect fat accumulation in skeletal muscle. In addition, several transcriptional and nutritional factors can directly induce transdifferentiation of myoblasts into adipocytes. In this review, we focused on the recent progress in understanding the muscle-to-adipocyte differentiation and summarized and discussed the genetic, nutritional, and physiological factors that can induce transdifferentiation of myoblasts into adipocytes. Moreover, the regulatory roles and mechanisms of these factors during the transdifferentiation process were also discussed.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Transdiferenciación Celular , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Adipocitos/patología , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Composición Corporal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/patología , Mioblastos Esqueléticos/patología , Estado Nutricional , Estrés Oxidativo , Fenotipo , Transducción de Señal
11.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33119550

RESUMEN

The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k-/- muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k-/- myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k-/- muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Enfermedades Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Noqueados , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mioblastos Esqueléticos/patología , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
12.
Thyroid ; 31(1): 115-127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32787533

RESUMEN

Background: The type 2 deiodinase (DIO2) converts thyroxine to 3,3',5-triiodothyronine (T3), modulating intracellular T3. An increase in DIO2 within muscle stem cells during skeletal muscle regeneration leads to T3-dependent potentiation of differentiation. The muscle stem cell niche comprises numerous cell types, which coordinate the regeneration process. For example, muscle stem cells provide secretory signals stimulating endothelial cell-mediated vascular repair, and, in turn, endothelial cells promote muscle stem differentiation. We hypothesized that Dio2 loss in muscle stem cells directly impairs muscle stem cell-endothelial cell communication, leading to downstream disruption of endothelial cell function. Methods: We assessed the production of proangiogenic factors in differentiated C2C12 cells and in a C2C12 cell line without Dio2 (D2KO C2C12) by real-time quantitative-polymerase chain reaction and enzyme-linked immunosorbent assay. Conditioned medium (CM) was collected daily in parallel to evaluate its effects on human umbilical vein endothelial cell (HUVEC) proliferation, migration and chemotaxis, and vascular network formation. The effects of T3-treatment on vascular endothelial growth factor (Vegfa) mRNA expression in C2C12 cells and mouse muscle were assessed. Chromatin immunoprecipitation (ChIP) identified thyroid hormone receptor (TR) binding to the Vegfa gene. Using mice with a targeted disruption of Dio2 (D2KO mice), we determined endothelial cell number by immunohistochemistry/flow cytometry and evaluated related gene expression in both uninjured and injured skeletal muscle. Results: In differentiated D2KO C2C12 cells, Vegfa expression was 46% of wildtype (WT) C2C12 cells, while secreted VEGF was 45%. D2KO C2C12 CM exhibited significantly less proangiogenic effects on HUVECs. In vitro and in vivo T3 treatment of C2C12 cells and WT mice, and ChIP using antibodies against TRα, indicated that Vegfa is a direct genomic T3 target. In uninjured D2KO soleus muscle, Vegfa expression was decreased by 28% compared with WT mice, while endothelial cell numbers were decreased by 48%. Seven days after skeletal muscle injury, D2KO mice had 36% fewer endothelial cells, coinciding with an 83% decrease in Vegfa expression in fluorescence-activated cell sorting purified muscle stem cells. Conclusion:Dio2 loss in the muscle stem cell impairs muscle stem cell-endothelial cell crosstalk via changes in the T3-responsive gene Vegfa, leading to downstream impairment of endothelial cell function both in vitro and in vivo.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Yoduro Peroxidasa/metabolismo , Desarrollo de Músculos , Músculo Esquelético/enzimología , Mioblastos Esqueléticos/enzimología , Neovascularización Fisiológica , Comunicación Paracrina , Regeneración , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Movimiento Celular , Proliferación Celular , Humanos , Yoduro Peroxidasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Mioblastos Esqueléticos/patología , Transducción de Señal , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Yodotironina Deyodinasa Tipo II
13.
Mar Drugs ; 18(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265937

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder with heterotopic ossification (HO) in soft tissues. The abnormal activation of bone morphogenetic protein (BMP) signaling by a mutant activin receptor-like kinase-2 (ALK2) leads to the development of HO in FOP patients, and, thus, BMP signaling inhibitors are promising therapeutic applications for FOP. In the present study, we screened extracts of 188 Indonesian marine invertebrates for small molecular inhibitors of BMP-induced alkaline phosphatase (ALP) activity, a marker of osteoblastic differentiation in a C2C12 cell line stably expressing ALK2(R206H) (C2C12(R206H) cells), and identified five marine sponges with potent ALP inhibitory activities. The activity-guided purification of an EtOH extract of marine sponge Dysidea sp. (No. 256) resulted in the isolation of dysidenin (1), herbasterol (2), and stellettasterol (3) as active components. Compounds 1-3 inhibited ALP activity in C2C12(R206H) cells with IC50 values of 2.3, 4.3, and 4.2 µM, respectively, without any cytotoxicity, even at 18.4-21.4 µM. The direct effects of BMP signaling examined using the Id1WT4F-luciferase reporter assay showed that compounds 1-3 did not decrease the reporter activity, suggesting that they inhibit the downstream of the Smad transcriptional step in BMP signaling.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Dysidea/metabolismo , Inhibidores Enzimáticos/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Miositis Osificante/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Esteroles/farmacología , Tiazoles/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 4/toxicidad , Línea Celular , Inhibidores Enzimáticos/aislamiento & purificación , Indonesia , Ratones , Estructura Molecular , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miositis Osificante/metabolismo , Miositis Osificante/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Esteroles/aislamiento & purificación , Relación Estructura-Actividad , Tiazoles/aislamiento & purificación
14.
Aging (Albany NY) ; 12(21): 21446-21468, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33136552

RESUMEN

Skeletal muscle wasting represents both a common phenotype of aging and a feature of pathological conditions such as chronic kidney disease (CKD). Although both clinical data and genetic experiments in mice suggest that hyperphosphatemia accelerates muscle wasting, the underlying mechanism remains unclear. Here, we showed that inorganic phosphate (Pi) dose-dependently decreases myotube size, fusion index, and myogenin expression in mouse C2C12 skeletal muscle cells. These changes were accompanied by increases in reactive oxygen species (ROS) production and Nrf2 and p62 expression, and reductions in mitochondrial membrane potential (MMP) and Keap1 expression. Inhibition of Pi entry, cytosolic ROS production, or Nrf2 activation reversed the effects of high Pi on Nrf2, p62, and myogenin expression. Overexpression of Nrf2 respectively increased and decreased the promoter activity of p62-Luc and myogenin-Luc reporters. Analysis of nuclear extracts from gastrocnemius muscles from mice fed a high-Pi (2% Pi) diet showed increased Nrf2 phosphorylation in sham-operated and 5/6 nephrectomized (CKD) mice, and both increased p62 phosphorylation and decreased myogenin expression in CKD mice. These data suggest that high Pi suppresses myogenic differentiation in vitro and promotes muscle atrophy in vivo through oxidative stress-mediated protein degradation and both canonical (ROS-mediated) and non-canonical (p62-mediated) activation of Nrf2 signaling.


Asunto(s)
Diferenciación Celular , Hiperfosfatemia/complicaciones , Desarrollo de Músculos , Atrofia Muscular/etiología , Mioblastos Esqueléticos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Animales , Línea Celular , Modelos Animales de Enfermedad , Hiperfosfatemia/inducido químicamente , Hiperfosfatemia/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos Esqueléticos/patología , Miogenina/genética , Miogenina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fosfatos , Fosforilación , Insuficiencia Renal Crónica/complicaciones , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
15.
Mol Biol Rep ; 47(10): 7971-7977, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33034881

RESUMEN

Studies have shown that sulforaphane (SFN) has potent anti-inflammatory and free radical scavenging effects on obesity and associated disorder such as diabetes, polycystic ovary syndrome, and metabolic syndrome. fractalkine (CX3CL1) and its receptor, CX3CR1, play an important role in muscle metabolism by improving insulin-sensitizing effects. Here, in this study we examined the SFN effect on CX3CL1 and its receptor, CX3CR1, in C2C12 myotubes in palmitic acid (PA)-induced oxidative stress and inflammation. The results showed that PA (750 µM) evoked lipotoxicity as a reduction in cell viability, increased IL-6 and TNF-α expression, and enhanced reactive oxygen species (ROS). However, SFN pretreatment attenuated the levels of, IL-6 and TNF-α in C2C12 myotubes exposure to PA. Moreover, SFN pretreatment up-regulated nuclear factor erythroid related factor 2 (Nrf2) /heme oxygenase-1(HO-1) pathway protein in C2C12 cells as indicated by a decrease in ROS levels. Interestingly, PA also caused an increase in CX3CL1 and CX3CR1 expression that SFN abrogated it. We also found the protective effect of SFN agonist PA-induced lipotoxicity with promotes in UCP3 gene expression in C2C12 cells. Collectively, these findings suggest that SFN hampers the PA-induced inflammation in C2C12 cells by modulation of the Nrf2/HO-1 pathway and CX3CL1/CX3CR1 axis and may propose a new therapeutic approach to protect against obesity-associated disorders in skeletal muscle cells.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Isotiocianatos/farmacología , Mioblastos Esqueléticos/metabolismo , Ácido Palmítico/toxicidad , Sulfóxidos/farmacología , Animales , Línea Celular , Interleucina-6/metabolismo , Ratones , Mioblastos Esqueléticos/patología , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Pharm Pharmacol ; 72(12): 1667-1693, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32812252

RESUMEN

OBJECTIVES: The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS: C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY: The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic ß-cells and endothelial cells, was discovered.


Asunto(s)
Desarrollo de Medicamentos , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Insulina/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Línea Celular , Portadores de Fármacos , Composición de Medicamentos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Hipoglucemiantes/química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Nanopartículas , Puntos Cuánticos , Transducción de Señal
17.
Toxins (Basel) ; 12(7)2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708381

RESUMEN

Vermeersiekte or "vomiting disease" is an economically important disease of ruminants following ingestion of Geigeria (G.) species in South Africa. Sheep are more susceptible, and poisoning is characterized by stiffness, regurgitation, bloat, paresis, and paralysis. Various sesquiterpene lactones have been implicated as the cause of poisoning. The in vitro cytotoxicity of two sesquiterpene lactones, namely, ivalin (purified from Geigeria aspera) and parthenolide (a commercially available sesquiterpene lactone), were compared using mouse skeletal myoblast (C2C12) and rat embryonic cardiac myocyte (H9c2) cell lines, representing the oesophageal, skeletal and cardiac muscles, which are affected in sheep. For 24, 48, and 72 h, both cell lines were exposed. A colorimetric viability assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), was used to assess cytotoxicity. A concentration-dependent cytotoxic response was observed in both cell lines, however, the C2C12 cells were more sensitive, with the half-maximal effective concentrations (EC50s) ranging between 2.7 and 3.3 µM. In addition, the effect that ivalin and parthenolide has on desmin, an important cytoskeletal intermediate filament in myocytes, was evaluated using the C2C12 myoblasts. Disorganization and aggregation of desmin were caused by both sesquiterpene lactones, which could clarify some of the ultrastructural lesions described in vermeersiekte.


Asunto(s)
Citoesqueleto/efectos de los fármacos , Desmina/metabolismo , Lactonas/toxicidad , Mioblastos Esqueléticos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sesquiterpenos/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Ratones , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
18.
Lipids Health Dis ; 19(1): 156, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611437

RESUMEN

BACKGROUND: The prevalence of type 2 diabetes, obesity and their various comorbidities have continued to rise. In skeletal muscle lipotoxicity is well known to be a contributor to the development of insulin resistance. Here it was examined if the small molecule adiponectin receptor agonist AdipoRon mimicked the effect of adiponectin to attenuate palmitate induced reactive oxygen species (ROS) production and cell death in L6 skeletal muscle cells. METHODS: L6 cells were treated ±0.1 mM PA, and ± AdipoRon, then assays analyzing reactive oxygen species (ROS) production and cell death, and intracellular and extracellular levels of sphingosine-1 phosphate (S1P) were conducted. To determine the mechanistic role of S1P gain (using exogenous S1P or using THI) or loss of function (using the SKI-II) were conducted. RESULTS: Using both CellROX and DCFDA assays it was found that AdipoRon reduced palmitate-induced ROS production. Image-IT DEAD, MTT and LDH assays all indicated that AdipoRon reduced palmitate-induced cell death. Palmitate significantly increased intracellular accumulation of S1P, whereas in the presence of AdipoRon there was increased release of S1P from cells to extracellular medium. It was also observed that direct addition of extracellular S1P prevented palmitate-induced ROS production and cell death, indicating that S1P is acting in an autocrine manner. Pharmacological approaches to enhance or decrease S1P levels indicated that accumulation of intracellular S1P correlated with enhanced cell death. CONCLUSION: This data indicates that increased extracellular levels of S1P in response to adiponectin receptor activation can activate S1P receptor-mediated signaling to attenuate lipotoxic cell death. Taken together these findings represent a possible novel mechanism for the protective action of adiponectin.


Asunto(s)
Adiponectina/metabolismo , Lisofosfolípidos/metabolismo , Músculo Esquelético/efectos de los fármacos , Palmitatos/toxicidad , Piperidinas/farmacología , Esfingosina/análogos & derivados , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Lisofosfolípidos/farmacología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Adiponectina/agonistas , Esfingosina/metabolismo , Esfingosina/farmacología
19.
Adv Biosyst ; 4(6): e2000034, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32390329

RESUMEN

The molecular mechanisms of the development and progression of diabetes and obesity involve complex interactions between adipocytes and skeletal muscle cells. Although 2D in-vitro models are the gold standard for the mechanistic study of such behaviors, they do not recreate the complexity and dynamics of the interactions between the cell types involved. Alternatively, animal models are used but are expensive, difficult to visualize or analyze, are not completely representative of human physiology or genetic background, and have associated ethical considerations. 3D co-culture systems can be complementary to these approaches. Here, using a newly developed 3D biofabrication method, adipocytes and myoblasts are positioned precisely either in direct physical contact or in close proximity such that the paracrine effects could be systematically studied. Suitable protocols for growth and differentiation of both cells in the co-culture system is also developed. Cells show more restrained lipid and protein production in 3D systems compared to 2D ones and adipocytes show more lipolysis in indirect contact with myoblasts as response to drug treatment. These findings emphasize importance of physical contact between cells that have been overlooked in co-culture systems using transwell inserts and can be used in studies for the development of anti-obesity drugs.


Asunto(s)
Adipocitos/metabolismo , Comunicación Celular , Diabetes Mellitus/metabolismo , Modelos Biológicos , Mioblastos Esqueléticos/metabolismo , Obesidad/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Técnicas de Cocultivo , Diabetes Mellitus/patología , Lipólisis , Ratones , Mioblastos Esqueléticos/patología , Obesidad/patología
20.
Biomed Pharmacother ; 128: 110238, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32450522

RESUMEN

Muscle atrophy is the loss of skeletal muscle mass during several pathological conditions such as long-term fasting, aging, cancer, diabetes, sepsis and immune disorders. Glucocorticoids are known to trigger skeletal muscle atrophy. Dexamethasone (DEX), a synthetic glucocorticoid, induces skeletal muscle atrophy by suppression of protein synthesis and promotion of protein degradation. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) plays a significant role in mediating lipopolysaccharide-induced inflammation. However, pathological roles of PKR in muscle atrophy are not fully understood. The current study aimed to investigate the effect of imoxin, a PKR inhibitor, on DEX-induced muscle atrophy in C2C12 myotubes. Myotubes were incubated with imoxin at different concentrations with or without 5 µM DEX for 24 h. In the current study, imoxin treatment significantly reduced protein levels of MuRF1 and MAFbx induced by DEX by 88 ± 2% and MAFbx by 99 ± 0%, respectively. Moreover, 5 µM imoxin treatment reduced protein ubiquitination by 42 ± 4% and protein content of nuclear FoxO3α (77 ± 4%) in presence of DEX. Furthermore, 5 µM imoxin treatment stimulated Akt phosphorylation (195 ± 5%), mTOR phosphorylation (171 ± 21 %) and p70S6K1 phosphorylation (314 ± 31 %) under DEX-treated condition even though DEX treatment did not suppressed Akt/mTOR/p70S6K1 axis. These findings suggest that imoxin may protect against DEX-induced skeletal muscle atrophy by alleviating muscle specific E3 ubiquitin ligases and imoxin alone may promote protein synthesis via Akt/mTOR/S6K1 axis in muscle cells.


Asunto(s)
Anabolizantes/farmacología , Dexametasona/toxicidad , Imidazoles/farmacología , Indoles/farmacología , Atrofia Muscular/prevención & control , Mioblastos Esqueléticos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Línea Celular , Proteína Forkhead Box O3/metabolismo , Ratones , Proteínas Musculares/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/enzimología , Atrofia Muscular/patología , Mioblastos Esqueléticos/enzimología , Mioblastos Esqueléticos/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...